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Abstract: The paper considers the lkeda chaotic system of
fractional order. Using numerical simulations effects of fractional
order, delay and parameters on chaotic behaviour of the system
is investigated. Simulations are performed using Ninteger Frac-
tional Control Toolbox for MATLAB.
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1. Introduction

Dynamical systems described by fractional order differen-
tial or difference equations have been investigated in seve-
ral areas such as viscoelasticity, electrochemistry, diffusion
processes, control theory, electrical engineering, etc. The
problems of analysis and synthesis of dynamic systems
described by fractional order differential (or difference)
equations have recently considerable attention, see [1, 3, 7,
10-14], for example.

Many non-linear dynamical systems have behaviour
known as chaos. Chaos is a very interesting non-linear
phenomenon. Recently it has been intensively studied in
many papers and books, see [4, 5, 8, 9, 15], for example,
and references therein.

More recently, many investigations are devoted to
chaotic dynamics of fractional order dynamical systems,
for example [2, 6], Chapters 5 and 6 in [12].

In this paper we consider the Ikeda chaotic system
described by the fractional order non-linear differential
equation and using numerical simulations we examine
effects of fractional order, delay and parameters on cha-
otic behaviour of the system. Simulations were performed
using Ninteger Fractional Control Toolbox for MATLAB
[16].

The Ikeda model (standard not fractional) was intro-
duced to describe the dynamics of an optical bistable
resonator [4, 5].

2. Preliminaries and the main results

Consider the ITkeda time-delay system described by the
equation

(1) = —ax() + bsin x(t — h(t)), (1)

where a, b are constant coefficients and h is the delay.
The Ikeda model was introduced to describe the dy-

namics of an optical bistable resonator. In this model x(¢)

is the phase lag of the electric field across the resonator,

a is the relaxation coefficient for the dynamical variable,
b is the laser intensity injected into the system and h(z) is
the round-trip time of the light in the resonator or feed-
back delay time in the coupled systems [5, 9].

If

a=1, b=4, h(t)=h=1.5, (2)
the system (1) is chaotic. Chaotic trajectories of the sys-
tem for 7e[0,200] with initial conditions xy(T)=xy=-0.1
(blue line, 1) and xy=0.1 (red line, 2), te[-A,0] are
shown in fig. 1.

From simulations it follow that if
a=1, b=3, h=15
or

a=1, b=4, h=1,

the limit cycle behaviour is observed. Trajectory for a=1,
b=3, h=1.5 with initial condition x;=0.1 is shown in
fig. 2. This trajectory tends to a limit cycle.

For a=1, b=4 and h=2 the system (1) has chaotic
trajectory. Fig. 3 shows this trajectory with initial condi-
tion xp =0.1.

In [6] it was shown that if

a=3, b=24, h(t)=h=02, (3)

the system (1) is chaotic as it is shown in Fig. 4 for
1€[0,80] with xo=0.1.

4

3

x(t-h)

Fig. 1. Chaotic trajectories of the system (1),
(blue line, 1) and x; =0.1 (red line, 2)

Rys. 1. Trajektorie chaotyczne uktadu (1), (2) przy x,=-0,1
(linia niebieska, 1) oraz x, =0,1 (linia czerwona, 2)

(2) with x5 =-0.1
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Fig. 2. Trajectory of the system (1) for a=1, b=3, h=1.5
Rys. 2. Trajektoria uktadu (1) dla a=1, b=3, h=1,5

x(t-h)

Fig. 3. Chaotic trajectory of (1) for a=1, b=4, h=2
Rys. 3. Trajektoria chaotyczna uktadu (1) dlaa=1, b=4, h=2

x(t-h)

Fig. 4. Chaotic trajectory of the system (1), (3)
Rys. 4. Trajektoria chaotyczna uktadu (1), (3)

In this paper we consider the fractional order Ikeda
time-delay system described by the equation

o D% = —ax(t) + bsin x(t — h(1)), (4)

where o is the fractional order of derivative satisfying
inequality 0<o<2,
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1 'Jr P (1)t
L(p-o)(r—1)*H=P

0 D%x(1) = p-1sas<p, (5)

is the Caputo definition for fractional o -order derivative,
where xP)(£)=dPx(t)/dt? , p is a positive integer and

(o) = Te_tta_ldt (6)
0

is the Euler gamma function.

From (5) for p=1 and p=2 we have, respectively,

1 txP
oDEx() = ——— [~——Zdr, O<a<l,  (7)
Fd-o) o(-1)*
t,(2)
D) =— PO ()

TQ2-0)(-0*"

The Laplace transform of the Caputo fractional deriv-
ative has the form

LiyDlx(1)} = s%F(s) - £s% D%y, (9)
k=1

For zero initial conditions, the Laplace transform (9)
reduces to

L{y DI x(t)} = s*F(5). (10)

The chaotic dynamics of the system (4), (3) was inves-
tigated in [6] for fractional order 0<o<1. Simulations
were performed for o varying from 0.9 to 0.1 with the
step Aa=0.1 and chaotic attractors were found for all
these values of the fractional order o .

In this paper we consider the fractional Ikeda system
(4) with o0e€(0,2). In simulations we wary fractional
order o, parameter b and time delay h. Parameter a=1
is fixed. For simulation we apply the Ninteger Fractional
Control Toolbox for MATLAB of Valerio [16]. In this
toolbox exists a Simulink block nid for fractional deriva-
tive and integral. Order and method for rational approxi-
mation of fractional derivative/integral can be selected. In
simulations we select the Oustaloup’s approximation
technique (CRONE) of order n=7.

—
e i >

Add  Integrator
Fractional derivative

x1=x(t)

Delay 0%(' Ly
. >
1 % XY Graph
Trigonometric
b Function x2=x(t-h)

4 % sin

Fig. 5. Matlab/Simulink model of the fractional system (4)
Rys. 5. Model uktadu (4) w srodowisku MATLAB/Simulink




The block nid has the transfer function ks', where v
is a real number.

The model of the fractional system (4) created in the
MATLAB/Simulink environment is shown in fig. 5. The
fractional integrator 1/s% is modelled by series connection
of the classical integrator and the block mnid. Transfer
function of this connection is k/s"7'. It is easy to see that
ve (0,1) for ae (0,1) and ve (-1,0) for ae(1,2).

First, we study the effect of fractional order ae (0,2)
on the chaotic behaviour of the system (4) for fixed values
a, band h, given in (2). Performing simulations we vary
fractional order o from 0.1 to 1.9 with the step Aa=0.1.
From simulations it follows that the system (4) with pa-
rameters (2) has chaotic behaviour for =095 (fig. 7),
o=1 (fig. 1), a=1.1..0=1.6, a=1.8 and a=1.9 (fig.
9). For =09 and a=1.7 the limit cycles are observed
(figs. 6 and 8).

Fig. 6. Limit cycle of (4), (2) for =0.9
Rys. 6. Cykl graniczny uktadu (4), (2) dla ao=0,9

Fig. 7. Chaotic trajectory of (4), (2) for a0.=10.95
Rys. 7. Trajektoria chaotyczna uktadu (4), (2) dla o =0,95

Fig. 8. Limit cycle of (4), (2) for oo.=1.7
Rys. 8. Cykl graniczny uktadu (4), (2) dla o.=1,7

x(t-h)

Fig. 9. Chaotic trajectory of (4), (2) for av=1.9
Rys. 9. Trajektoria chaotyczna uktadu (4), (2) dlao.=1,9

Next, we consider the following two cases:
Case 1: the system (4) with parameters

a=1, b=5, ht)=h=15, (11)

and the fractional order o varying from 0.1 to 1.9 with
the step Ao=0.1. From simulations it follows that the
system has chaotic behaviour for all considered values of
o. Selected trajectories are shown in figs. 10-12.

Case 2: the system (4) with parameters

a=1, b=4, h(t)=h=2. (12)

From simulations it follows that for a=0.6 ..0=1.9
the system has chaotic behaviour or limit cycle. The limit
cycle is observed for a=0.6, a=1.6 .. a=1.8; chaotic
behaviour is observed for =0.7 .. a=1.5 and a=1.9.
Selected trajectories are shown in figs. 13-20.
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Fig. 10. Chaotic trajectory of (4), (11) for ov=0.1

Fig. 13. Limit cycle of (4), (12) for o =0.6
Rys. 10. Trajektoria chaotyczna uktadu (4), (11) dla oo =0,1

Rys. 13. Cykl graniczny uktadu (4), (12) dla o.=0,6

x(t-h)

x(t-h)

Fig. 11. Chaotic trajectory of (4), (11) for 0=0.9 Fig. 14. Chaotic trajectory of (4), (12) for ot =0.7
Rys.11. Trajektoria chaotyczna uktadu (4), (11) dla 0.=0,9 Rys.14. Trajektoria chaotyczna uktadu (4), (12) dla o =0,7

x(t-h)

Fig. 12. Chaotic trajectory of (4), (11) for ao=1.5

Fig. 15. Chaotic trajectory of (4), (12) for ov=1.5
Rys.12. Trajektoria chaotyczna uktadu (4), (11) dla av=1,5

Rys.15. Trajektoria chaotyczna uktadu (4), (12) dla a=1,5
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Fig. 16. Plot of x(z) for the system (4), (12) for ov=1.5
Rys.16. Wykres x(¢) dla uktadu (4), (12) dla a=1,5

Fig. 17. Trajectory of (4), (12) for at=1.6
Rys.17. Trajektoria uktadu (4), (12) dla oo =1,6
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Fig. 18. Plot of x(z) for the system (4), (12) for o.=1.6
Rys.18. Wykres x(z) dla uktadu (4), (12) dla a.=1,6

3. Concluding remarks

Using numerical simulations, chaotic dynamics of the
fractional order Ikeda system (4) has been studied. Simu-

lations have been performed using Ninteger Fractional
Control Toolbox for MatLab.

First, it has been shown that the integer order Ikeda
system (1) for a=1, b=3, h=1.5 and for a=1, b=4,
h=1 has the limit cycles.

Next, for the fractional system (4) it has been con-
cluded that the system has a chaotic behaviour for follow-
ing values of parameters:
a=1, b=4, h=15 and o=095, a=1, o=I1.1..
o=1.6, a=1.8 and a=1.9
a 5, h=15 and a=1.1..0=1.9
a =4, h=2 and a=0.7 ..a=1.5 and a=1.9.

x(t-h)

Fig. 19. Limit cycle of (4), (12) for ov=1.8
Rys. 19. Cykl graniczny uktadu (4), (12) dla a=1,8

x(t-h)

Fig. 20. Chaotic trajectory of (4), (12) for aa=1.9
Rys. 20. Trajektoria chaotyczna uktadu (4), (12) dla oo =1,9

The work was supported by the National Science Center
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Analiza chaotycznej dynamiki uktadu Ikedy
niecatkowitego rzedu

Streszczenie: Rozpatrzono chaotyczny uktad lkedy niecatkowi-
tego rzedu. Stosujgc badania symulacyjne zbadano wptyw war-
tosci niecatkowitego rzedu, opdznienia oraz parametréw uktadu
na mozliwo$¢ wystepowania drgan chaotycznych. Badania prze-
prowadzono w $rodowisku systemu Matlab/Simulink wykorzystu-

jac Ninteger Fractional Control Toolbox for MatLab.

Stowa kluczowe: chaos, uktad niecatkowitego rzedu, uktad

Ikedy, opdznienie.
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