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Abstract: This paper concerns fault diagnosis of industrial plants 
and complex systems with special interest in fault diagnosis 
system design. Scope of research connected with using causal 
graphs to fault diagnosis is presented. Directed graph is used 
to describe causal relationships between process variables and 
faults. New method for finding set of model structures based 
on causal graph is presented. Model structure is understood 
as an output variable and set of input variables. Algorithm for 
determining model sensitivity to faults is described. Method for 
finding possible ability to detect and isolate each fault given 
calculated set of models is described. Main ideas are explained 
on simple example.
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1. Introduction

In industrial plants faults can lead to large economic los-
ses and cause dangerous situations [5]. This is the reason 
why fault diagnosis is an important problem. In recent 
years issues of fault diagnosis system design are attrac-
ting a lot of attention.

Causal graphs are useful tools for fault diagnosis system 
analysis. This topic was first concerned in paper [1]. Graph 
vertices can represent process variables, system compo-
nents and events like faults and operator interventions. 
Graph edges represent causal influences between vertices. 
Directed graphs can be used to fault symptoms propaga-
tion analysis [2, 3] and to find fault signatures [4, 6]. Si-
mulation of fault propagation can be obtained and set of 
rules for fault discrimination can be built [7]. Another ap-
plication of causal graphs is multiple fault diagnosis [8, 9].

One of important problems in causal graph analysis is 
existence of cycles. Methods for dealing with feedback and 
control loops are considered [10]. Another issue is size of 
the model for complex systems. An idea of graph parti-
tion is presented in paper [10]. Graph modelling real sys-
tem can be obtained from mathematical description [11], 
piping and instrumentation diagrams [12] and from archi-
val industrial databases [13, 14].

In most of papers diagnostic signal is understood as 
crossing of alarm thresholds [8, 15] or as an alarm coming 
from system component [16, 17]. In case of an alarm thre-
shold crossing diagnostic signal is often described using 
fuzzy logic [18].

Using causal graph to model based diagnosis was first 
proposed in paper [19]. This work continues that idea. 
Main difference in relation to most of previous works is 

that diagnostic signal is understood as a difference betwe-
en measured signal and reference value calculated from 
model. In this context model can be set of algebraic equ-
ations, differential algebraic equations, look-up table, neu-
ral model, fuzzy model etc.

2. Causal graph

As a model of a process causal graph is used. Vertices 
represent the process variables, control signals or faults 
excluding sensor faults. Directed edges represent influen-
ces between vertices. Following methods and algorithms 
will be explained on a simple example of a single tank sys-
tem presented in fig. 1.

��

��

�

�

Fig. 1. Single tank system
Rys. 1. Układ zbiornika

List of variables is shown in tab. 2. Considered faults 
are presented in tab. 1.

Tab. 1. List of variables
Tab. 1. Lista zmiennych

CV

CVv

u

F1

h

F2

controller output

control signal received in valve

valve position

inflow

tank level

outflow
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Tab. 2. List of faults
Tab. 2. Lista uszkodzeń

f1
f2
f3
f4

control circuit fault
valve fault
tank leakage
outlet clogging

Fig. 2. Casual graph of a single tank system
Rys. 2. Graf przyczynowo-skutkowy układu zbiornika

Causal graph of a single tank system is presented in 
fig. 2. Graph vertices represent all variables and faults. 
Edges show causal relationships. Signal from a control-
ler is send to a valve and received signal influences valve 
position. Degree of valve opening causes changes in inflow. 
Tank level depends on inflow and outflow. Growth of tank 
level causes increase of outflow.

Fault in a control circuit disturbs value of a control 
signal received in a valve. Valve fault influences valve posi-
tion. Tank leakage causes decrease of tank level. Clogging 
of an outlet causes decrease of outflow.

This kind of causal graph containing vertices repre-
senting faults can be used to find set of possible process 
models and their sensitivity to faults.

3. Model structures

Model structure is understood as an output variable and 
set of input variables. Given causal graph of a system all 
possible model structures can be found. Method for finding 
model structures is presented in work [19]. This paper pre-
sents new method for solving this problem.

3.1. Requirements for model structures
Set of an input variables for a given output variables sho-
uld fulfil following requirements:
1. For each input variable in a causal graph a path must 

exists from input variable to output variable.
2. Set of input variables should be complete.

Requirement no. 1 means that each model input sho-
uld influence modelling variable. For example, there is no 
point in building model of valve position u with tank level 
h as an input because tank level have no influence on va-
lve position (influence through control circuit is no consi-
dered). Complete set of an inputs means that set of input 

variables should cut all causal influences between outer va-
riables and model output. If variable v is not influenced 
by any of model inputs then in a graph should not exist 
a path from vertex v to model output not containing any 
of model inputs. For example model with tank level h as 
an output and outflow F1 as an input does not have com-
plete set of inputs because in a given causal graph exist 
path from inflow F1 to h.

Some remarks about causal relations between 
model inputs 
When building model structures some additional require-
ment related to causal relationships between inputs should 
be considered. For example, model of a tank level h con-
taining as an inputs valve position u and inflow F1 is not 
a good idea, because given measure of an inflow F1 data 
about valve position u gives no useful additional informa-
tion. The strictest requirement is to forbid existence of any 
path between model inputs. That approach was presen-
ted in work [19]. In this paper another approach is propo-
sed. The requirement is that in a causal graph must exist 
a path from each input of a model to an output not con-
taining any other inputs. In other words each input varia-
ble has influence on output variable that cannot be descri-
bed using other input variables. Difference between this 
two approaches is visible only when in a graph exists some 
path ramifications.

Fig. 3. Example graph G1
Rys. 3. Przykładowy graf G1

Consider example graph G1 presented in fig. 3. Ver-
tices a, b and c represent process variables, vertices f1, f2 
and f3 represents faults. There are two possible models of 
variable c: ĉ = f(a) and ĉ = f(a, b). Model with one input 
b has not complete set of inputs. Model with one input 
ĉ = f(a) fulfils strict requirement of no causal relations 
between inputs. This model is disturbed by faults f2 and 
f3. Model with two inputs a and b does not fulfil strict 
requirement but fulfils requirement of existence of path 
from each input of a model to an output not containing 
any other inputs. This model is disturbed only by fault f3 
which means that models with causal relations between 
variables can be used to improve faults discrimination.

3.2. Finding model structures
Calculation of all possible model structures contains fol-
lowing steps:
1. Finding and merging strongly connected components.
2. Topological sorting of vertices.
3. Building model structures.
4. Finding proper models.
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5. Checking for fulfilment of requirement related to causal 
relations between inputs.

6. Adding models with more than one variable from the 
same strongly connected component.

Each step will be described in following paragraphs.
Strongly connected components Strongly con-

nected component in a graph G is a set of vertices that for 
each pair of vertices u and v in a graph G exists path from 
u to v and from v to u [20]. One strongly connected com-
ponent contains set of variables influencing each other. 
Merging strongly connected components of graph G solves 
problem of dealing with cycles. Strongly connected com-
ponents of a graph G can be identified using well known 
algorithm based on a depth-first search [20]. Causal graph 
of a single tank system with merged strongly connected 
components is presented in fig. 4. This graph contains 
only one strongly connected component including vertices 
h and F2. These two vertices were replaced by one vertex 
named SN0.

Fig. 4. Graph of a single tank system with merged strongly con-
nected components

Rys. 4. Graf przyczynowo-skutkowy układu zbiornika z połączo-
nymi silnie spójnymi składowymi

Topological sorting Topological sorting of graph pro-
vides partial order of vertices. If in a graph G exists a path 
from vertex u to vertex v, then vertex u precedes vertex 
v in obtained order. Topological sorting of a graph makes 
sense only when graph does not contain cycles, so it could 
be used to process causal graph with merged strongly con-
nected components. Processing graph in a topological or-
der ensures that when vertex u is processed all of its pre-
decessors in a graph G were already processed. Topological 
sorting of a graph can be obtained using well known algo-
rithm also based on a depth-first search [20]. In a graph of 
single tank system with merged strongly connected com-
ponents after topological sorting vertices have order as fol-
lows: CV, CVv, u, F1 and SN0.

Building model structures All possible model struc-
tures fulfilling requirements 1 and 2 are found by algori-
thm 1.

Algorithm 1 ModelStructures(GX,Q)
while Q ¹ 0 do

v ← max(Q)
P ←predecessors set of vertex v
add(Models, (v, P))
Sets(P, P, v)

end while

GX is a symbol for causal graph of a system with 
merged strongly connected components and deleted faults. 
Vertices representing faults are not useful to finding model 
structures because fault cannot be a model input or out-
put. Q is a priority queue containing vertices of graph GX 
in topological order. Algorithm ModelStructures(GX, Q) 
process all vertices v of graph GX in a topological order. 
For each vertex v first model contains all v predecessors 
in a graph GX as an input set. Then recursive procedure 
Sets(SP, P, v) is called. SetModels is a set of pairs. Each 
pair contains output variable of a model and set of input 
variables.

Algorithm 2 Sets(SP, P, v)
for all p Î SP do

if p Î P then
for all M Î Models(p) do

remove(SP, p)
add(SP, in(M))
add(Models, (v, SP ))
Sets(SP, P, v)

end for
end if

end for

Procedure Sets(SP, P, v) extends set of models repla-
cing each of model inputs p by inputs set of some model 
of p. This could be done because all models of p were fo-
und previously because vertices are processed in topologi-
cal order. SP is a set of model inputs, v is modelled varia-
ble, P is a set of v predecessors. Models(p) is a set of varia-
ble p models, in(M) means input variables set of model M.

Models calculated for single tank system are listed in 
tab. 3.

Tab. 3. List of models for single tank system
Tab. 3. Lista modeli dla układu zbiornika

CVv
u
F1
SN0

[CV ]
[CVv]
[u], [CV ], [CVv]
[u], [CV ], [CVv], [F1]

Proper models For fault diagnosis can be used only 
models containing known variables. This motivates follow-
ing definition.

Proper model structure is a model structure satis-
fying following conditions:

1. Model output is measured process variable or a merged 
strongly connected component containing at least one 
measured process variable.

2. Set of model inputs contains only control signals or me-
asured process variables or a merged strongly connec-
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ted components containing at least one measured pro-
cess variable.
Assuming that following variables are measured in 

a single tank system: u, F1, h, F2 we obtain set of proper 
models listed in tab.4.

Tab. 4. List of proper models for single tank system
Tab. 4. Lista właściwych modeli dla układu zbiornika

u
F1

SN0

[CV]

[u], [CV ]
[u], [CV ], [F1]

Requirement related to causal relation-
ships between model inputs This part of algorithm 
depends on selected requirement. In case of requirement 
of existence of path from each input to output not con-
taining other inputs algorithm 3 can be used. Edges in a 
graph GX are reversed and for all models M depth-first 
search is started from model output v. When one of model 
inputs is encountered its successors in graph GT are not 
added to a queue. If all model inputs were encountered 
then model M fulfils requirement.

Algorithm 3 CausalRelations(Models,GX)
create graph GT by reversing all edges in GX

for all M Î Models do
do DFS(v,GT ) with stopping on M inputs

if not all in(M) were met then
remove(Models,M)

end if
end for

In single tank system example there is no problem 
with casual relationships between variables.

Additional models Last step of finding all model 
structures is adding models containing more than one 
variable from one strongly connected component. Vari-
ables in one strongly connected component all influences 
each other so this additional models could not fulfil re-
quirement of no causal relations between model inputs. 
Despite this they are worth consideration because they 
can improve faults discrimination.

New models are added by algorithm 4.

Algorithm 4 NewModels(GX)
for all SN Î GX do

create graph GSN by splitting SN into vertices
create graph GT

SN reversing all edges GSN

for all measured v Î SN do
for all measured w Î SN do

delete outgoing edges of w
DFS(GT

SN, v) with stopping on measured variables
var(v,w) ← set of first measured vari-

ables encountered in DFS(GT
SN, v)

AddModel(v,w, var(v,w))
end for

end for
end for

Algorithm search for new models for all strongly 
connected components SN in a graph GX. Component SN 
is divided into vertices and edges in a graph are reversed. 
All possible model outputs v and all possible additional 
inputs w from the same component are considered. Set 
var(v, w) contains measured variables u for which ex-
ists path from u to v not containing w. Only measured 
variables are considered because obtained models should 
be proper models. In DFS(GT

SN,  v) successors of measured 
variables are not added to a queue, so set var(v,w) con-
tains only variables near v. Models of encountered vari-
ables are already obtained so there is no point in further 
searching. At the end of algorithm recursive procedure 
AddModel(v,w, var(v,w)) is called.

Procedure AddModel(v, addIn, variables) is pre-
sented as an algorithm 5. v is modelled variable, add-
In is a set of possible additional inputs from the same 
strongly connected component and variables is a set of 
variables u for which exist path from u to v not contain-
ing any vertex from set addIn. If variables is an empty 
set then set addIn is an complete model and can be add 
as an new model of variable v. If set variables is included 
in some input set of model of v then model with input 
set containing variables and addIn can be added. At the 
end searching for next additional input from the same 
component is started.

Algorithm 5 AddModel(v, addIn, variables)
if variables = 0 then

add(Models, (v, addIn))

end if
for all m Î Models(v) do

if variables  Î  in(m) then
add(Models, (v, addIn  È variables)

end if
end for
for all vn  Î  SN(v) do

if vn  Î v variables then
ok ← TRUE
for all in  Î  addIn do

if in Ï var(v, vn) then
ok ← FALSE

end if
remove(variables, vn)

if ok then
variables ← variables  Ç var(v, vn)

add(addIn, vn)

end if
AddModel(v, addIn, variables)

end for
end if

end for

All models obtained for a single tank example are li-
sted in tab. 5.
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Tab. 5. List of all proper models for single tank system
Tab. 5. Lista wszystkich właściwych modeli dla układu zbiornika

Model output Set of all proper models

u

F1

h

F2

[CV]

[u], [CV]

[u], [CV], [F1], [F2, CV], [u, F2], [F1, F2]

[u], [CV], [F1], [h]

4. Models sensitivity

For models designed for diagnosis system their sensitivity 
to faults is very important.

Model structure sensitivity to faults is a set of 
faults which can cause difference between the value calcu-
lated from model and measured value of variable.

In a causal graph model structure sensitivity to faults is 
a set of faults for which in a graph exists path from fault 
to modelled variable not containing any of input variables. 
Set of faults disturbing each model is found in an algori-
thm 6. Graph edges are reversed and for each model out-
going edges of each input variable are deleted. Model is 
sensitive to faults encountered by depth-first search star-
ted from model output v.

Algorithm 6 Faults(Models,G)

create graph GT reversing all edges G

for all M Î Models do

for all w  Î  in(M) do

delete outgoing edges of w

end for

DFS(GT , v)

f(M) ← set of faults encountered in DFS(GT, v)

end for

Last step is to add sensitivity to sensor faults. Model is 
sensible to faults of all sensors measuring input variables 
and output variable.

Models and their sensitivity to faults for single tank 
example were listed in tab. 6. Sensor faults are marked by 
letter f and symbol of measured variable.

5. Faults detection and discrimination

Given set of model structures and their sensitivity to faults 
possible ability of diagnosis system can be obtained. Fault 
can be detected when exists at least one model sensitive 
to this faults. Two faults can be distinguished when they 
can be detected and at least one model sensitive to one of 
them and not sensitive to another exists.

Results obtained this way are optimistic prognosis be-
cause causal graph is a qualitative model of a process. Mo-
dels good from causal point of view can be impossible to 
use in practise in case of bad quality of measurements, pre-
sence of large disturbances or little fault influence.

In a single tank example all faults can be detected. 
Faults f1 and f2 cannot be distinguished.

6. Summary

Applications of directed graphs to fault diagnosis were 
described. Idea of a causal graph searching application to 
a model based diagnosis was presented.

Requirements for causal relation between model input 
and output variables were discussed and new requirement 
for causal relations between model inputs was proposed 
which allows generation of additional models and can give 
better faults discrimination.

New method for finding set of possible model structu-
res was presented. Method differs from algorithm presen-
ted in [19]. Problem of dealing with cycles in graph was 
solved. Need for generation of special tree for each output 
variable was eliminated. Proposed method allows genera-
tion of all models at once using results calculated previo-
usly for models of other output variables. Presented algo-
rithms can be easily implemented using well known me-
thods of graph processing.

Method for finding possible ability of diagnosis system 
based on a calculated set of models was described.
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Zastosowanie grafu przyczynowo-skutkowego 

w diagnostyce wykorzystującej modele procesu

Streszczenie: Artykuł dotyczy zagadnień projektowania syste-
mów diagnostyki procesów przemysłowych z wykorzystaniem 
grafów przyczynowo-skutkowych. Przedstawiono stan badań 
dotyczących zastosowania grafów w diagnostyce. Graf przyczy-
nowo-skutkowy jest grafem skierowanym zawierającym wierz-
chołki reprezentujące zmienne i uszkodzenia oraz krawędzie 
obrazujące wzajemne oddziaływania. Zaprezentowano meto-
dę znajdowana zbioru struktur wszystkich modeli, które mogą 
zostać wykorzystane w systemie diagnostycznym. Opisany jest 
sposób określania wrażliwości modeli na uszkodzenia oraz 
znajdowania możliwej do uzyskania wykrywalności i rozróżnial-
ności uszkodzeń.

Słowa kluczowe: diagnostyka przemysłowa, graf przyczyno-
wo-skutkowy, modele
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